ON p-ADIC FUNCTIONAL INTEGRATION
نویسندگان
چکیده
p-Adic generalization of the Feynman path integrals in quantum mechanics is considered. The probability amplitude Kv(x, t′′; x′, t′) (v = ∞, 2, 3, · · · , p, · · ·) for a particle in a constant field is calculated. Path integrals over Qp have the same form as those over R.
منابع مشابه
Positive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کاملp-ADIC ARAKELOV THEORY
We introduce the p-adic analogue of Arakelov intersection theory on arithmetic surfaces. The intersection pairing in an extension of the p-adic height pairing for divisors of degree 0 in the form described by Coleman and Gross. It also uses Coleman integration and is related to work of Colmez on p-adic Green functions. We introduce the p-adic version of a metrized line bundle and define the met...
متن کاملAnalytic P-adic Cell Decomposition and P-adic Integrals
Roughly speaking, the semialgebraic cell decomposition theorem for p-adic numbers describes piecewise the p-adic valuation of p-adic polyno-mials (and more generally of semialgebraic p-adic functions), the pieces being geometrically simple sets, called cells. In this paper we prove a similar cell decomposition theorem to describe piecewise the valuation of analytic functions (and more generally...
متن کاملSIMONS SYMPOSIUM: NOTES FROM A LECTURE BY FRANÇOIS LOESER ON MOTIVIC INTEGRATION, APRIL 4, 2013 1. p-adic Integration Igusa introduced p-adic integration to solve the following question of Borevich and Shafarevich
Zp |f |dx by a change of variables formula taking T to p−s. If f is a monomial, then this p-adic integral can be computed by hand and shown to be a rational function in p−s. If f is not necessarily a monomial then, roughly speaking, one uses resolution of singularities over Qp to monomialize f , and then proceeds by a similar direct computation. Serre considered a variant of this generating fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996